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Abstract. The Fredholm integral equation method is applied to the scattering of electro- 
magnetic waves by finite dielectric cylinders of circular cross section. The method is 
applied to a wide range of diameter/length ratios, including both rods and discs. Generally 
good agreement has been obtained with the experimental backscatter measurements of 
McCormick and Hendry. 

1. Introduction 

In previous papers (Uzunoglu and Holt 1977, Holt et a1 1978, Holt 1980) we have 
described the application of the Fredholm integral equation method (FIM) to the 
problem of scattering of electromagnetic radiation from dielectric scatterers. The 
scatterers considered were either two dimensional (infinite cylinders of elliptic cross 
section) or three dimensional (spheroids and ellipsoids). 

The problem had been generated from a need to have reliable estimates of 
attenuation and cross-polarisation for microwave propagation paths; oblate spheroids 
are reasonable models of raindrops. However, on earth-satellite links, ice has been 
shown to be a significant depolarising medium, even though it gives rise to little 
attenuation (for a review see Bostian and Allnutt 1979). Ice occurs in a number of 
different forms and shapes. In hail the particles are often large and the shape variable 
(Barge and Isaacs 1973). At high altitudes the particles can be either conglomerates 
or hexagonal crystals (Mason 1971, Ono 1970, Varley 1978). The crystals are often 
in the shape of plates or needles. In an effort to investigate the importance of shape 
in the scattering of electromagnetic waves in the microwave and millimetre wave 
bands, we have extended our application of the FIM. 

In this work we have studied finite cylinders as a step towards modelling the discs 
and needles which arise in high-altitude ice. 

There seem to be very few previous calculations for finite cylinders. Uzunoglu et 
a1 (1978) considered thin rods, Weil and Chu (1976, 1980) have considered thin discs 
and Morgan and Mei (1979) have reported one sample calculation. There is experi- 
mental evidence available: Allan and McCormick (1 980a, b) have studied backscatter- 
ing from a number of different shapes of circular cylinder, and have presented data 
on cross sections and on the amplitude and phase of the depolarisation. Their 
measurements may be regarded as very reliable, since their measurements of the same 
quantities for spheroids have been shown to agree excellently with theory (Holt 1982a) 
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and several different theoretical methods for spheroids are known to agree (cf Holt 
1982b). 

In § 2 we briefly describe the FIM. In § 3 we give details of the matrix element 
calculations for finite circular cylinders. In § 4 we give sample results and compare 
these results with the other available results, both theoretical and experimental. 

2. Fredholm integral equation method 

The method was first introduced by Holt and Santoso (1973) to study quantum 
scattering by a central potential, and was then extended to electromagnetic wave 
scattering by Uzunoglu et a1 (1976). An observation by Uzunoglu led to a modification 
involving a Fourier expansion. This modification has greatly improved the application, 
and has been described in detail by Holt (1980). It is this description that we 
summarise. 

We consider a plane electromagnetic wave of wavevector ko and polarisation vector 
e*i incident on an axially symmetric dielectric scatterer of refractive index no(r) and 
volume V. The dyadic integral equation describing this (with exp(-iwt) time depen- 
dence suppressed) is 

E(r) = .DO exp(iko*r)+ G(r, r’)y(r’)E(r’) dr’  (1) 

y ( r ) = ~ ~ ( n ~ ( r ) - l ) ~ ~ ~ ( ~ ( r ) - l )  (2) 

I, 
where 

and, for any A, 
* A  

JA = I - k*kA. 
The scattering amplitude tensor for scattering in the direction Ls is 

I P 

f = - & a  exp(-ik,.r)y(r)E(r) d r  
4.rr l J  v 

(3) 

(4) 

and thus the vector scattering amplitude for polarisation e*i is 

f = f ‘e*i. ( 5 )  
We can see from (4) that a knowledge of the field inside the scatterer is sufficient 

to determine the scattering. If we premultiply (1) by exp(-ikl * r)y(r), where k l  is for 
the present arbitrary, and integrate throughout the scatterer, we then have an integral 
equation which involves only the interior field. Formally we have 

(kllYlE) = @ l l Y  E o )  + (kllYGY IQ. (6) 
We have lost all information on the exterior field, though it may be regained from 
(1). The interior field is Fourier transformable, and we write 

Eint(r) = C(k2,  ko) exp(ik2.r) dkz. (7) I 
Substituting (7) into (6) and (4) gives 

J a z  ~ k l ,  k z ) ~ z ,  ko) = ~ o ~ ( k 1 ,  ko) (8) 



EM scattering by finite circular cylinders 653 

and 

Equations (8) and (9) may be solved by reducing the integrations by numerical 
quadrature, thus obtaining a matrix equation from which f may be obtained. This 
has been shown to be numerically stable since the amplitude so obtained satisfies the 
Schwinger variational principle (Holt et a1 1978). 

For incident polarisation ii, we take the (post) scalar product obtaining 

and 

For homogeneous scatterers, only one wave number occurs in (7) (cf Devaney 
and Wolf 1974). We expand the azimuthal depen_dence in a Fourier series, and we 
describe the field in terms of the components (1/J2) (E, *E,,), E,. Thus 

(x2 = COS e2) .  
For a general axially symmetric body it has been shown (Shepherd 1981) that the 

matrix equation resulting from applying quadrature to (8) is in block diagonal form, 
each block being 

L ; y  Lit2 L ; y  dl,r+2 Ur+2h1 
(Liz2)= L; I  (Li i l lT)  ( d2,r ]=  1 Uh2 (17) 
(L;;2)T L;;l L;ll  d3,r+l Ur+lh3 
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U r  = J dcp2 exp(-ircpz)U(kz, ko) .  
0 

Each L partition in (17) is of dimension N,  where N is the number of pivots in 
the numerical quadrature. Details of the matrix element evaluation for spheroids 
have been given by Holt (1980). We describe the evaluation of the matrix elements 
for circular cylinders in § 3. 

One point which should be mentioned concerns the edges, since this is a problem 
in methods, such as the T matrix method (cf Waterman 1969), which involves surface 
currents. As far as the internal field is concerned the important point is that in the 
neighbourhood of an edge the ‘energy finiteness condition’ (Jones 1964) should be 
satisfied. This is guaranteed in the FIM since the internal field is assumed to be Fourier 
transformable. 

3. Matrix elements for finite circular cylinders 

The heart of the calculation lies in the evaluation of the matrix elements U(kl ,  k z )  
and K(kl, k z ) .  In the evaluation of the latter, the singularity inherent in the original 
integral equation (1) is integrated out analytically, resulting in a non-singular kernel 
K. 

The calculation of 

is straightforward when the scatterer is homogeneous, i.e. when y( r )  = y .  If the cylinder 
has radius a and height 2b, and if we describe kl, kZ in cylindrical coordinates 
(kl = (kip, PI, klZ) ,  then we find 

where 

z i z = k i z  - k z z  (22) 

and 

R ’ = k : ,  + k i p  -2klpkzp ~ ~ ~ ( c p i - c p z ) .  (23) 
In equation (21), j o ( x )  is the zeroth-order spherical Bessel function, and J i ( x )  is 

the first-order Bessel function. To obtain U, (equation (19)) we use the expansion 
(Watson 1966) 

where C; is the Gegenbauer polynomial. 
Using the relation 
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we obtain 

l + r  even 

As shown by Holt et a1 (1978), 

where 

We need to calculate 
2 T  

v,, = Jo dcpl exp(-ircpl) Joz' dcp2 exp( i scp2)~- '~ (k~ ,  k z ) ~  

where T is given in (15). Using (26) we find 

t + r  even u + s  even 

To evaluate the integrals in (30) we use the expansion 
X 

io[b(x - Y ) I =  1 (2n + 1)in(bx)jn(6y). 
n = O  

This has the advantage that the integrals are decoupled from the components of kl, k 2 .  
Thus one evaluation of the integrals suffices for calculating all the matrix elements. 
We finally obtain, on performing the z integration, 
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where 

m<,, = min, max(m, n )  (36) 
and 

.r = ( k & p 2 ) 1 ' 2 .  (37) 
The integrals in (33)-(35) have been performed numerically. It should be noted 

that they are independent of the refractive index. Details of the numerical procedures 
used have been given by Shepherd (1981). 

4. Results 

The essential part of any research which involves heavy computation is adequate 
checking with independent research. Our first check has been with the work of 
Uzunoglu et a1 (1978). In table 1 we compare our scattering amplitudes with the 
results they obtained for a thin cylinder. It will be seen that the real parts are in 
excellent agreement, whereas the imaginary parts differ by around 50%. We believe 
the reason for this lies in the nature of the approximation made by Uzunoglu et al. 
Their assumptions were similar to those of Rayleigh theory. The latter also estimates 
the imaginary part of the scattering amplitudes less accurately than it does the real 
part (see, e.g., Shepherd (1981), and table 2 below). 

Our next checks are with the observations of Allan and McCormick (1980a, b). 
They have performed experiments on a number of sample shapes of synthetic ice, 
measuring the backscattered power and cross-polarisation. In figures 1-6 we compare 
our results with theirs for several samples, ranging in axial ratio from 'rod' to 'discs'. 
The quantities being compared are U, v and S where 

= Ifv(T) +fH(n)12/477 (38) 

with p = +1 for discs and (-1) for rods. 

Table 1. Forward scattering amplitude for scattering of vertically polarised radiation 
incident perpendicular to the axis of a thin rod of refractive index 1.4. 

koa c l a  This work Uzunoglu et a1 (1978) 
0.02 12.5 4.66(-5) +i1.44(-9) 4.67(-5) +i2.28(-9) 
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Figure 1. Backscattering by rod scatterer with ka = 0.267, c / a  = 9.99, E = 3.15 -i0.036. 
- theory; ----- expt. 

-360 
0 30 60 90 

Figure 2. Backscattering by rod scatterer with ka = 0.343, c / a  = 10.00, E = 3.14-iO.036. 
- theory: ----- expt. 
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Figure 3. Backscattering by rod scatterer with &a =0.458, c / a  = 5.00, E = 3.14-iO.036 
- theory; ----- expt. 
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Figure 4. Backscattering by rod scatterer with ka = 0.914, c/a  = 2.498, E = 3.14 -i0.036. 
- theory; ----- expt. 
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Figure 5. Backscattering by disc scatterer with ka = 2.285, c i a  = 0.2013, E = 
3.12-iO.036. -theory; ----- expt. 
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Figure 6. Backscattering by disc scatterer with ka = 2.283, c / a  = 0.1008, E = 
3.13-iO.036. -theory; ----- expt. 
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J ” ~ , ~ ( T )  are the backscattering amplitudes for vertically or horizontally polarised 
incident radiation. It should be noted that the theory and experiment assumed opposite 
signs in the time dependence (and hence used opposite signs for the imaginary part 
of the refractive index). This results in opposite signs for S. However, to make a 
comparison, we have adopted the sign convention of Allan and McCormick, both for 
S and the quoted value of the complex permittivity E .  

A backscatter comparison is always a more sensitive test than a forward-scatter 
comparison, since the various partial waves give contributions whose signs alternate, 
whereas for forward scattering they all have the same sign. The agreement between 
theory and experiment is seen to be satisfactory. In figures 1 and 2 we plot a/A 2, 1v12 
and S for rods of axial ratio 10: 1 and two different sizes. We note that the curves 
for c/A and 1vI2 are in broad agreement, though the theory tends to accentuate the 
peaks. We find peaks in S which the experimental results do not reflect. In figures 
3 and 4 we give results for rods of axial ratio 5 : 1 and 2.5 : 1 respectively. Again there 
is a good measure of agreement, except that the theoretical and experimental curves 
seem to be displaced in angle. In figures 5 and 6 we give results for discs of axial 
ratios 5 : 1 and 10: 1 respectively. In both these cases agreement is least good when 
the incident radiation is orientated at approximately 90” to the axis of the disc-i.e. 
it is incident on an edge of the discs. In making these comparisons we have used the 
parameters given by McCormick and Hendry. However, the backscatter amplitudes 
can be sensitive to these parameters, and this could be a cause of error. A second 
cause of error can result from the nature of the experiment. The samples were rotated 
at an even speed, and the quantities measured were obtained by fitting a good number 
of data points. In their paper McCormick and Hendry indicated that with some of 
their larger, more elongated samples, they had difficulty in maintaining a steady angle 
of rotation. Also it should be noted that there must inevitably be difficulty in measuring 
cross sections over a range of 35 dB. All these factors suggest that the theoretical 
results are in very good agreement with the experimental results over a wide range 
of axial ratio. 

A final check is to compare the results for small cylinders with those for spheroids 
of the same volume and same axial ratio. In table 2 we give forward and backward 
scattering amplitudes for incidence along the axis of symmetry WO), and for both 
polarisations incident perpendicular to the axis of symmetry (fv, fH). The scatterer is 
a ‘disc’ of axis ratio 64 : 1. We also give for comparison the Rayleigh approximation 
for the spheroid, and note that this demonstrates our earlier comment. 

The current implementation clearly has its limitations since, as the size parameter 
increases, so does the number of terms which need to be included in the summations 
in equation (32). In turn this means that the number of integrals to be calculated 
escalates rapidly. We believe that currently we can perform calculations for ice 
(no  = 1.78 + i  0.0024) for kod S 3.5, where d = max(a, b ) .  

5. Conclusion 

We have extended the Fredholm integral equation method to scattering by finite 
circular cylinders and shown that our results are in good agreement with other available 
results. Using this method it will now be possible, for example, to examine the 
importance of shape in the study of cross-polarisation effects in the propagation of 
microwaves through tropospheric ice particles. 
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